The Creation Station: An Approach to
a Multimedia Workstation

INTRODUCTION TO THE
CREATION STATION

The Center for Performing Arts and Technology (CPAT)
has been working for the past year on a multimedia elec-
tronic arts software product called the Creation Station. The
team behind the Creation Station includes CPAT Director
David Gregory, who first envisioned the Creation Station, and
Associate Directors Hal Brokaw and Henry Flurry, principal
architects and programmers of the Creation Station. This
workstation-based package will provide the artist with ad-
vanced sound synthesis and graphics as well as the tools nec-
essary to create multimedia pieces of art. We are attempting
to present a unified environment that will reflect an intui-
tive understanding of multimedia integration while main-
taining flexible and sophisticated storage, editing and per-
formance capabilities. We also aim to provide a software
foundation that will support different and perhaps yet-un-
developed aspects of computer-aided art, including com-
puter-based art research.

The Creation Station will employ a graphics interface sim-
ilar to that pioneered by Xerox and made famous by the
Apple Macintosh. We utilize traditional musical metaphors
to present a homogeneous interface that will allow control
of many multimedia artforms. For instance, one window will
contain the master recorder panel that will govern the per-
formance and recording of all events. From this window, the
button labeled ‘PLAY will perform any Creation Station—
based piece consisting of musical elements, graphic ele-
ments or both. Other windows will display events contained
in tracks of the hierarchical track structure, allowing the
user direct control over the type of event stored within each
track and the sequence in which tracks are performed.

Because of the simplicity of this interface, the average
user will find the Creation Station straightforward. However,
to the more experienced user or programmer, the Creation

Fig. 1. In Object-Oriented Programming Languages, a single
message may effect different actions when applied to different
objects. This is called polymorphism.

[Computer Program | [Stocking |
"execute the

program code”

[ey |
{ "go quickly by

moving legs faster
than at a walk"

unravel"

"tear or ’

©1988ISAST
Pergamon Press plc. Printed in Great Britain.
0024-094%/88 $3.00+0.00

Henry S. Flurry

Station will reveal many layers of
power and flexibility. This paper
primarily discusses how this pow-
er and flexibility are achieved.
The first version of the Crea-
tion Station, to be announced
during the summer of 1988, will
include a composer’s applica-
tion, a choreographer’s applica-
tion and the Instrument Builder.
The composer’s application will

ABSTRACT

The Center for Performing Arts
and Technology at the University of
Michigan is developing the Creation
Station, a workstation-based soft-
ware package that will provide the
artist advanced sound synthesis

provide a variety of musical out-
putdevices and a number of ways
to input and edit musical events.
The choreographer’s applica-
tion will allow a choreographer
to design stage props, input and
edit three-dimensional motion
paths for objects (presumably,
but not necessarily, dancers) and
view in three-dimensional per-
spective the resulting choreogra-
phy. The Instrument Builder
(not discussed in this paper) will be an icon-driven, device-
independent, sound design module. One version of the In-
strument Builder will allow the user to program sounds on
almost any MIDI synthesizer with system exclusive capabili-
ties.

Later versions of the Creation Station will provide other ar-
tistic tools (such as theater set and lighting design simula-
tion, interactive performance tools, and interactive video
editing), educational tools (such as musicianship and other
art form lessons), and research tools (such as large sound
and video databases and applications supporting interactive
testing of theories). Depending upon the complexity of the
implementations, the Creation Station will run on either
super-micro or high-power workstation class computers.

guages is included.

SOME SPECIFIC DESIGN CRITERIA

We aim to design an environment that will reflect the intui-

tion of most artists but will also adapt to other creative styles.
In view of this, we made the following design decisions:

¢ Tracks are hierarchical. Typically, an artist does not

think of his/her creation as a single, indivisible chunk.

A hierarchical track system allows the artist to organize

Henry S. Flurry, University of Michigan, School of Music, 1100 Baits Drive, Ann Arbor,
MI 48109-2085, U.S.A.

Received 5 April 1988.

LEONARDO, Electronic Art Supplemental Issue, pp. 31-37, 1988

31

The MIT Press is collaborating with JSTOR to digitize, preserve, and extend access to
Leonardo. Supplemental Issue. RIKORS

and graphics capabilities, as well as
the tools necessary to create mult:
media pieces of art. This paper dis-
cusses the design criteria, program-
ming obstacles and implementation
details of the Creation Station. Be-
cause the Creation Station is coded
in Objective-C, a brief tutorial on
Object-Oriented Programming Lan-

WWWw.jstor.org

the creation into progressively
smaller and more manageable
groups.

¢ Performance order of tracksis not
limited to the hierarchical struc-
ture of the tracks. This allows the
artist to organize the creation
within a structure not based upon
time-span division.

e A single track may play in canon
with itself, at any timing offset.
This includes tracks containing
either musical or non-musical
events.

e The user may work in many dif-
ferent timing bases when editing
events, editing conductor tracks
and displaying real-time passage
of performance time. This in-
cludes measures and beats, min-
utes and seconds, SMPTE, and
user-defined timing bases.

e Tracks can follow whichever con-
ductor track the user desires.

e The Creation Station will support
third-party development of new
types of artistic events, device driv-
ers and editing environments.

POTENTIAL
PROGRAMMING
OBSTACLES

Even before coding of the Creation Sta-
tion started, it was clear that these and
other criteria would prove challeng-
ing. Some of the potential obstacles
were:

* How to create a software package
that would seamlessly integrate an
undefined and potentially large
set of event classes (such as music,
animation, dance, etc.), their as-

Fig. 2. An object is presented as a single
unified construct, where the methods of
the object encapsulate the data of the ob-
ject. Program code can only access an
object’s data through the object’s
methods.

sociated device drivers and the
event editing environments.

¢ How to synchronize events of dif-

ferent timing schemes (such as
measures and beats, minutes and
seconds or SMPTE).

¢ How to synchronize events of dif-

ferent media—especially if some
events take longer to realize than
others.

¢ How to allow a single track to play

in canon with itself. We need to
prevent interference between two
simultaneous performances of a
single track.

¢ How to enable the integration of

third-party extensions to the Crea-
tion Station.

Although solutions to these and
other problems could be implement-
ed in many different programming
languages, most programmers would
agree that the complexity of the nec-
essary code within languages such as C
and Pascal would be almost too great
to manage. However, in an Object-
Oriented Programming Language
(OOPL), many of the problems are
diminished to the point of becoming
trivial, and other programming tasks
are conceptually simplified. For this
and other reasons, we are developing
the Creation Station in Objective-C [1].

INTRODUCTION TO
OBJECT-ORIENTED
PROGRAMMING
LANGUAGES AND
OBJECTIVE-C

In most programming languages, data
is passed to a procedure to be acted
upon. For example, the calculation of
the square root of xmight be executed
by the procedure call:

sqrt(x)

There is, somewhere inside the pro-
gram code, a unique function ac-
cessed by the sqrt() call. This function
accepts its argument, evaluates the
square root of the argument, and re-
turns the resulting value. However,
sqrt() is expecting a particular type of
value—typically a double float num-
ber. It is the responsibility of the pro-
grammer to make sure that the sqrt()
function is not passed a character, in-
teger, or user-defined structure. More-
over, the user must make sure that the
function’s return value is assigned to a
variable of the proper type.

32 Flurry, The Creation Station: An Approach to a Multi-Media Workstation

Because so much of the burden of
data typing and procedure manage-
ment is placed upon the programmer,
there is a ‘complexity barrier’ which
prevents economical coding and
maintenance of complex systems
[Winograd, 1979]. We believe the
complexity of the Creation Station
would have approached this barrier.

OOPLs such as Objective-C en-
courage a different approach by blur-
ring the distinction between data and
code. To explain briefly the concepts
behind OOPLs and the terms used in
them, I will start by discussing the ob-
Ject, the basic construct of an OOPL.
You may think of an object as anal-
ogous to any entry within the ‘real’
world. Like anything else around us,
an object shows various propertiesand
behaviors.

To command an object to do some-
thing, one sends it a message. As in the
real world, the same message sent to
different objects may mean different
things. For example, commanding the
objects ‘boy’, ‘computer program’
and ‘stocking’ to ‘run’ would generate
three very different actions. In OOPLs
this is called polymorphism—the use of
a single message to evoke different ac-
tions from different objects (see
Fig. 1).

Objects may be of the same class or
of different classes. A class is simply a
definition of an object’s properties
and behaviors. Objects of the same
class exhibit similar properties and be-
haviors, whereas objects of different
classes will likely display different
properties and behaviors. ‘Fred’,
‘Kevin’, and ‘Nancy’ may be elements
of the class ‘people’, and they will all
exhibit certain similarities; however,
these three people are unique, even if
they are of the same class. In OOPLs
an instance of a class is an object which
belongs to that class but has a unique
identifier.

At this point, it becomes necessary
to discuss the structure of an object.
Within a class definition, the program-
mer defines an object’s instance vari-
ables and methods. Methods are the
‘procedures’ associated with an ob-
ject. A message sent to an object in-
vokes a method of the same name, ex-
ecuting the program code of that
method and returning a value to the
calling routine. Instance variables are
variables that are accessible only by the
methods associated with a class in-
stance. One may liken the instance
variables to the ‘properties’ of an ob-
ject, and the messages and methods to

the ‘behavior’ of an object. Thus, ob-
jects of the same class all respond to
the same messages, execute the same
methods and have the same data for-
mat for instance variables. However,
different instances of the same class
each contain their own copy of the in-
stance variables, and the instance
variable values associated with one in-
stance may be changed without affect-
ing the values of any other instances.
There are several other valuable
characteristics of OOPLs, most nota-
bly encapsulation, inheritance and dy-
namic binding. The instance variables
of an object can be accessed and
changed only by the methods as-
sociated with that object. This process
of information hiding, called encapsu-
lation, has some obvious benefits to
software design. Because the data of
an object can be accessed only by that
object’s methods, there is less chance
of accidental data corruption by out-
side routines. Once an object has been
debugged, it can be used and reused
as an entity with little concern for sup-
porting code. In addition, the boun-
daries of class definitions help clarify
the division of labor in group pro-
gramming projects (see Fig. 2).
Inheritanceis a natural by-product of
the hierarchy of classes, in which all
objects reside. In creating a class, the
programmer defines only the differ-
ences between the desired class and
the superclass. Instance variables and
methods that are not redefined are in-
herited by the subclass, causing this
new class to exhibit properties and be-
haviors similar to those of its super-
ciass (see Fig. 3). Inheritance is a pow-
erful capability of OOPLs. Valuable
programming time is saved by writing
only the code that is necessary to dif-
ferentiate a new class from its super-
class. Inheritance also extends the life
cycle of an object definition by allow-
ing a class to be tailored to the unique
needs of other applications. A third
aspect of OOPLs that is often over-
looked is dynamic binding—the post-
ponementof deciding what method to
invoke for a particular message until
run-time. Without dynamic binding,
the ability to assign any object to a
single variable would not exist, for the
variable would have to be statically de-
fined in order for the compiler to de-
termine successfully which methods
were bound to the coded messages.
Dynamic binding also allows the crea-
tion of new classes that will work with
existing precompiled code. Finally, dy-
namic binding will enable run-time

Fig. 3. In this in-
heritance hierar-
chy, Flute
inherits from
Woodwind instru-
ment, which in
turn inherits
from Wind instru-
ment. Flute
would include
only those
methods and in-
stance variables
which differen-
tiate it from
Woodwind.

Double Reed

ualved

Keyboard

Electronic Keyboard

Percussion

Acoustic Keyboard

Valveless Keyboard Strings

Single Reed

Clavichord

Harpsichord Pianoforte

Oboe

Bassoon

Saxophone

Upright Piano Grand Piano

Clarinet

linking with third-party extensions to
the Creation Station.

PROGRAMMING IN
OOPLs

Many traditional programmers find it
difficult at first to program with
OOPLs. Two basic concepts useful in
designing OOPL software are also use-
ful for understanding many program-
ming decisions presented in this
paper:

* The methods of an object should
closely relate to the data held with-
in the instance variables of that
object.

* Objects with conceptual similari-
ties should be acted upon with a
common protocol.

The first concept is fundamental to
programming within an OOPL. For
example, it might make sense to have
an object representing a musical note
be responsible for playing itself as stac-
cato, but it would not make sense to
have this same note object be respon-
sible for deleting a file from a com-
puter disk. This would be counter-in-
tuitive and would make management
of the programming project difficult.

The second concept is not as clear
as the first. It does not dictate how to
program in an OOPL as much as it dis-
plays the power of dynamic binding
combined with polymorphism (dy-
namic polymorphism). Consider the
generic class Event, which might en-
compass any type of performable
event in which we would be interested.
We can look at this group of event
classes and begin to formulate a list of
several conceptually common meth-
ods:

Event Classes:

* musical events

e dance events
evideo events
e etc.
Possible Common Methods:
e perform next event
ereturn to real time of the next
event to occur
e compare event attack-point tim-
ings of two individual events with-
in the same class
Each event class would more than
likely execute each method differ-
ently: the performance of a musical
event might produce sound, and the
realization of a dance event might
generate visual images. However, the
methods applied to the event classes
share the same general concepts.
Thus, if these methods carried a com-
mon protocol (i.e. respond to the
same set of messages), it would be pos-
sible to write code that would control,
for an object of any event class, many
of the desired functions.
For example, to perform an event—
be it musical or graphic—we could
write the single line of code

[an Event performNextEvent]

which, in Objective-C, sends the
message performNextEvent to the
event object stored in the variable an
Event. By changing the value of the
variable an Event, we could perform
any event defined within the Creation
Station.

In fact, this is how we handle many
objects of similar functions. Dynamic
polymorphism allows us to define dif-
ferent ‘genres’ of objects, where each
object of a single genre implements a
set of messages in conceptually similar
but physically different ways. We can
then use the same code to control
different objects of one genre to pro-
duce varying results.

Flurry, The Creation Station: An Approach to a Multi-Media Workstation 33

34

PlayManagementObject

THE CREATION
STATION BASICS

There are six major objects that form
the foundation of the Creation Station.
These objects, to be further discussed
later, are:
¢ Event: Objects of this genre store
performable events and contain
the code necessary for converting
the stored events into a represen-
tation acceptable for a Performer.
¢ Node: A Node is the track of the
‘hierarchical track tree’. A Node
contains an Event list and pro-
vides links to the Nodes below and
above it.
¢ PlayManagementObject: This ob-
ject is responsible for sequencing
during performance all of the
events within the Creation Station.
e Conductor: An object of this
genre is responsible for control-
ling the performance and record-
ing tempos of any Node or set of
Nodes.
¢ Performer: These objects are re-
sponsible for realizing at a spe-

cified time individual events
received from the PlayManage-
mentObject.

® Recorder: Recorder objects ac-
cept external input and translate
this input into time-stamped
events that may be stored within a
Node.

The Event, Conductor, Performer,
and Recorder objects all define genres
of object classes, and different objects
of the same genre may generally be
interchanged. Two other objects, the
PlayObject and the ConductObject,
will be introduced later in this paper.

ConductObject

Fig. 4. The Crea-
tion Station com-
munication
channels. To
maintain
modularity of ob-
jects, the Node
coordinates much
of the inter-ob-
ject communica-
tions. The
PlayObject and
ConductObject
are little more
than added levels
of indirection of
communication
between the
Node and the
PlayManagement-
Object, and the
Node and the
Conductor.

Time. There will be only one type of
timing base used in communication
between objects. If one object s to pass
a time value to another object, then
this time value must be converted to
the ‘standard timing base’ and stored
in a variable declared by the macro
TIME or in an instance of the class
Time. The rule is necessary for two rea-
sons:
¢ All objects must be able to read
and understand any timing values
received from another object.
eThe PlayManagementObject
must be able to sort and sequence
correctly multimedia events (such
as music or video) that may be de-
fined in different timing bases
(such as measures and beats, or
SMPTE).

The Node

As mentioned above, the Node con-
tains an event list which may be played
in synchronization with other event
lists within the Creation Station. The
Node stores the events in a modified
AVL tree, a structure that I call the
‘Linked Balanced Binary Tree’. This
structure was designed to optimize the
operations that would most commonly
be applied to an event list: insertion,
deletion, searching, changing, and se-
quencing (for performance). A strict
AVL tree provides relatively fast inser-
tion and deletion, optimal searching
and changing, but slow sequencing
[Wirth]. To accelerate sequencing, we
modified the AVL structure so that
each Node of the binary tree contains
not only a link to the Nodes above and
below it, but also to the Nodes sequen-
tially before and after it. Sequencing
through an event list is quickly accom-

Flurry, The Creation Station: An Approach to a Multi-Media Workstation

plished by following the second set of
links. Thus, the structure behaves
both like an AVL tree and like a linked
list.

To maintain maximum modularity,
the Node coordinates much of the
inter-object communications neces-
sary for event performance and
recording. The six objects described
above—"“Creation Station Basics”™—
must gather information from a num-
ber of other objects in order to per-
form their duties properly. If we
allowed each of these objects directac-
cess to the other objects containing
pertinent information, we would be-
gin to lose inherent modularity. Ex-
perience has shown that a system that
loses its modularity becomes more dif-
ficult to maintain and more prone to
failure. Thus, with the possible excep-
tions of the PlayObject and Conduct-
Object (discussed later), the Node is
the only object of the objects that com-
municates with more than one other
object (see Fig. 4).

So, when the PlayManagement-
Object needs to know the perform-
ance timing of each event, the Node is
responsible for communicating with
the Conductor and the Event to get
this timing. When the PlayManage-
mentObject is ready to perform an
event, the Node receives the timing
back from the PlayManagementOb-
ject, retrieves the event data from an
Event, and passes the two to a Per-
former object. During recording, a Re-
corder object passes received event
data to the Node. The Node then re-
quests its Event class to create an event
instance, and the Node inserts this
new event instance into its event list.

The Event

The Event is one of the objects that
makes the Creation Station so versatile.
An object of the Event genre is re-
sponsible for the following:

e Storing whatever information is
necessary to define an event or set
of events to be performed.

¢ Providing both the code necessary
to convert the internal represen-
tation of an event into a construct
acceptable by a Performer object
and the code necessary to convert
Recorder output into an Event
object.

¢ Providing the code necessary to
order two different instances of
the particular class of Event (the
compare: method).

e Sequencing events to be per-
formed in the proper order (the
returnNextEvent: method).

We can create a variety of events
that, by conforming to the above rules
and following the same messaging
protocol as other event classes, may be
used within the Creation Station. Be-
yond these guidelines, there are no re-
strictions to the event classes.

As an example, it is possible to cre-
ate an event class where each musical
event is timed in measures and beats.
In order to have the Node store the
events in the proper sequence, the
event class implements a method
named compare:, which examines the
measure and beat timings of two event
objects and returns a value indicating
which object should be sequentially
first.

In our choreography application,
we implement an event class whose in-
stances store four-dimensional splines
(3-D space plus time) defining motion
paths of dancers. When an instance of
this class receives the message return-
NextEvent: it calculates and returns a
three-dimensional point in space
based upon the performance time.

Finally, we could even define an
event class which implements an inter-
preted programming language. Each
event object might contain a line of
code or a procedure within a user-writ-
ten program. The compare: message
of the Event class could sort the proce-
dures or lines of code in the order they
were input by the user. When an Event
object is issued in the returnNext-
Event: message, it would execute a seg-
ment of the stored program to con-
struct the event to be returned.

The Performer

The Performer objects provide the
link between the internal represen-
tation of events and the external
realization of events. As in the Event
genre, there may be many different
types of Performer objects, where each
of these objects connects the Creation
Station to some artistic medium.

A Performer object accepts a re-
quest from the Node to perform an
event at a particular time. The event
to be performed is encoded within
some construct the Performer object
can parse, and the time is passed in the
standard timing base. A Performer
should make any lengthy calculations
necessary for event performance, buff-
er the results or events for later reali-
zation and return control to the Node.
There are a variety of ways to buffer

events; two of the most common ways
are for the Performer to arrange an
‘interrupt’ to occur at the time the
event is to be performed, or, if the
Creation Station is running on a multi-
tasking machine, for the Performer to
send the event to another process
which would handle the event realiza-
tion at the proper time.

Different Performers require vari-
ous event constructs, and a Performer
should not be sent an incompatible
event construct. It is easy to imagine
accidentally sending a choreographic
event construct to a MIDI output per-
former. On the other hand, a Per-
former object should be able to accept
event constructs from a multitude of
similar event classes. For example,
both an Event class which simply stores
musical events and an Event class
which computes musical events
should be able to use the same MIDI
Performer.

To solve these potential problems,
the Creation Station implements a sys-
tem which matches Event classes to
compatible Performer objects. Each
individual Event class has a ‘Perform-
ance Format Name’ (PFN), a string of
ASCII characters which is unique to
the type of event construct output by
that Event class. Likewise, each Per-
former object has a PFN which speci-
fies what type of event construct is ac-
cepted. When a user wants to choose
a Performer for a Node, the Node
matches the PFN of its associated
Event class with the PFNs of the avail-
able performers. The resulting set of
Performers is presented to the user,
who presumably chooses out of this set
a Performer object to realize the
events stored within the Node (see

Fig. 5).

Fig. 5. The Per-
formance Format
Name is used to
match up Events
with compatible
Performers.

I

Event and its
Performance Format

Name

With this system, it is easy to create
new classes of Event objects which will
work with pre-existing Performers.
New Performers that work with exist-
ing Events can likewise be created to
support new hardware.

The Recorder

The Recorder object is responsible for
accepting input from an external
source and converting it to an event
construct acceptable to an Event class.
It is similar to the Performer in that it
needs to be matched with compatible
Event classes. Both the Recorder ob-
jects and Event classes have ‘Record-
ing Format Names’ (RFNs) associated
with them. As above, the Node is re-
sponsible for matching its Event class
with potential Recorder objects, and,
also as above, it is easy to integrate a
new Recorder class into the Creation
Station if it matches an existing RFN.
The Recorder is additionally re-
sponsible for buffering its external
input until the end of a performance
is reached. At this time, the Recorder
sends each event to its associated
Node to be translated into an Event
object and stored within that Node.

The Conductor

The Conductor is a very important ob-
ject to the Creation Station. Not only
does a Conductor provide a tempo
map for performance within the Crea-
tion Station, it also can be employed by
the user to define an arbitrary timing
base. The main duties of the Conduc-
tor object are:

e To translate virtual time to real
time, and vice versa, basing the
conversion upon the tempo map
stored within the Conductor in-
stance.

~ "Music Note™

*Choreo”

"Music Nate"

 "Animation®

. "Choreo”

(Performers and their
Performance Format Names

Flurry, The Creation Station: An Approach to a Multi-Media Workstation

35

36

PlayObject
Instance
PlayObject
Instance

P L~
~
PlayObject
/M Instance

TS YOI

Fig. 6. The PlayObject can be thought of
as ‘saving a Node’s place in an Event list’.
Thus, a single Node may have several per-
formances that overlap as long as there
are PlayObjects to maintain each perform-
ance’s place.

¢ To translate the user-defined tim-
ing base to the standard timing
base, and vice versa.

There can be any number of Con-
ductor objects active during a per-
formance, with each Conductor con-
trolling a single Node or a set of
Nodes. In fact, it is entirely possible to
have every Node within a performance
following a different Conductor. In
any case, the Node is responsible for
coordinating the Conductor’s transla-
tion of an event’s virtual time to real
time (for performance) and vice versa
(for recording).

Before a user can input a tempo
map into a conductor, he/she must
define the timing base to be used. For
example, the user might wish to create
a tempo map for a piece of traditional
Western music. In this case, the user
would probably define the timing base
as measures and beats and give the
Conductor the number of beats in
each measure before constructing the
tempo map.

ConductObjects
One aspect of the Conductor and the
Node not yet discussed is that of ‘off-
set times’. The timings of events within
a Node are all relative to the perform-
ance time of the Node. Thus, ifa Node
starts performing its events 3 seconds
into a performance, the event within
the Node set to occur at time 2 seconds
will actually occur at 3 + 2 = 5 seconds
from the start of the performance.

In addition, in order for a Conduc-
tor to translate correctly between vir-
tual time and real time, it must keep

track of its offset time, the delay be-
tween performance start and Conduc-
tor start. To help with this, we have
created the ConductObject. A Con-
ductObject maintains the Conduc-
tor’s time of start and any memory re-
quired by the Conductor to keep track
of time translation—everything neces-
sary to re-establish a Conductor’s state
of conducting. ConductObjects are
always used by the Node to communi-
cate with the Conductor, so the Con-
ductObject can forward extra infor-
mation to the Conductor along with
the Node’s message.

A Node may request a particular
Conductor, or a Node may inherit a
Conductor from a previous Node. In
the latter case, the actual Conductor is
not inherited, but rather the Conduct-
Object, so that time translation re-
mains consistent.

PlayObjects

During performance with the Creation
Station, it is possible that the user may
request that a Node be performed sev-
eral times. It is further possible that
these Node performances may over-
lap. This presents some potential
problems: during a performance, a
Node needs to store certain informa-
tion, such as its performance offset
and active ConductObject. Likewise,
the Event objects may need to keep
track of information. If two or more
performances of a Node overlap, con-
flicts could occur among the data per-
tinent to each performance.

Similar to the ConductObject, the
PlayObject resolves any potential con-
flicts by keeping track of performance
states for the Node and its associated
Event objects (see Fig. 6). The infor-
mation stored in the PlayObject needs
to be passed to the Node every time
the PlayManagementObject wishes to
communicate with the Node. This
means that the PlayObject must re-
ceive and relay the appropriate mes-
sages from the PlayManagement
Object to the Node.

The PlayManagementObject
The PlayManagementObject is a sim-
ple object with two purposes:

* Manage and sequence a list of

PlayObjects during performance.
¢ Update the real-time display dur-
ing a performance.

There is only one instance of the
PlayManagementObject within the
Creation Station. When a performance
begins, the PlayManagementObject
creates a PlayObject for the top Node

Flurry, The Creation Station: An Approach to a Multi-Media Workstation

in the hierarchical track system, which
in turn creates PlayObjects for other
Nodes within the tree. The Play-
ManagementObject keeps track of the
events managed by each PlayObject
and correctly sequences the events of
the whole hierarchy until either no
more events are available or the user
interrupts the performance.

If, during the performance, the
PlayManagementObject is well ahead
of the Performer buffers, the Play-
ManagementObject will command an
object called ScrollWindow to display
the performance time. Each active
ScrollWindow is associated with a Con-
ductObject and displays the perform-
ance time in the user-defined timing
base. This allows the user to have per-
formance time displayed in any timing
base desired, including measures and
beats. If events are not being pro-
cessed fast enough, the PlayManage-
mentObject may never request the
ScrollWindow to update the displayed
time.

THE EDITOR AND
EDITORUI

These two objects will provide the user
with event list editing capabilities. Al-
though these objects have notyet been
created, they will follow many of the
same ideas as other objects within the
Creation Station. Objects of the Editor
genre will contain the code that edits
events of a certain class. Objects of the
EditorUI genre (named for ‘Editor
User Interface’) will be responsible for
providing the graphics user interface
to its associated Editor object. It is
possible to have many EditorUlIs that
will work with a single Editor object, so
we will implement a match system that
works with the Editor Format Name
(EFN). An Editor will have an EFN as-
sociated with it, and it will be matched
with available EditorUIs of the same
EFN. In this way, it will be easy to
change the user interface while keep-
ing the same editing functions.

CONCLUSION

As the Creation Station nears comple-
tion, it becomes increasingly clear how
much our project has benefited from
our using Objective-C:

* The Creation Station is easily ex-
pandable, with little or no recom-
pilation of existing code. This in-
cludes easy addition of new Event

classes and user interfaces, and
easy integration of new hardware.

¢ The user interface is highly flex-
ible, providing seamless integra-
tion and synchronization of a
multitude of Event classes, device
drivers and editing environments.

¢ Our program code more closely
models how we conceptualize the
Creation Station. In fact, most of the
objects we generate have direct
correlations within the user inter-
face. This includes the Node, the
Conductor, and the PlayManage-
mentObject, which is directly
linked with the master recorder
panel.

*We have generated surprisingly
little code in very little time to per-
form the desired tasks.

¢ Our code is highly reusable. In
fact, we have been able to share

objects that were originally cre-

ated to support very specific tasks.
¢ General program management

was much easier than expected.

* We soon expect to support third-
party development for the Crea-
tion Station. This would not be
possible without OOPL dynamic
binding.

Many people have contributed to
the Creation Station, and we have been
able to implement innumerable ideas
into one software package. Because
the Creation Station is such a flexible
system, we expect it to fill countless
niches within the artistic world.

Note

1. Objective-C is a registered trademark of the
Stepstone Corporation.

Bibliography

Brokaw, Hal, Henry Flurry, Phil Mackenzie and
Jeff Stillson, “Center for Performing Arts and

Flurry, The Creation Station: An Approach to a Multi-Media Workstation

Technology Preliminary Documentation of Ob-
jects” (University of Michigan, 1988).

Cox, Brad J., Object-Oriented Programming: An Evo-
lutionary Approach (Reading, MA: Addison-Wes-
ley, 1986).

Gregory, David, “A Proposal for a Center for Per-
forming Arts and Technology” (University of
Michigan, 1987).

Krasner, Glenn, “Machine Tongues VIII: The De-
sign of a Smalltalk Music System”, Computer Music
Journal 4, No. 4, 4-14 (1980).

Ledbetter, Lamar, and Brad Cox, “Software-ICs”,
BYTE (June 1985) pp. 307-316.

Lieberman, Henry, “Machine Tongues IX: Ob-
ject-Oriented Programming”, Computer Music
Journal 6, No. 3, 8-21 (1982).

Pascoe, Geoffrey A., “Elements of Object-Ori-
ented Programming”, BYTE (August 1986) pp.
139-144.

Rodet, Xavier, and Pierre Cointe, “FORMES:
Composition and Scheduling Processes”, Compu-
ter Music Journal 8, No. 3, 32-50 (1985).

Stepstone Corporation, “Technical Specifica-
tions: Objective-C Language Version 3.3” (Con-
necticut: Stepstone Corporation, n.d.).

Wirth, Niklaus. Algorithms and Data Structures (En-
glewood Cliffs, NJ: Prentice-Hall, 1986).

37

